BASICS OF MECHANICAL VENTILATION
FREE ONLINE COURSE

Patient-Ventilator Dyssynchrony

Laurent Brochard
Toronto
Conflicts of interest

• Our clinical research laboratory has received equipment or research grants for clinical research projects from the following companies:
 – Covidien (PAV+)
 – Air Liquide (CPR)
 – Sentec (tcPCO2)
 – Philips (Sleep)
 – Fisher Paykel (Optiflow)
Patient-Ventilator dyssynchrony

- Most patients are ‘assisted’ by the ventilator
- This assistance is supposed to be **synchronous** with patient’s respiration
- The main reason for **sedation** is to ‘adapt’ the patient to the ventilator and avoid dyssynchrony
- Dyssynchrony on the vent is associated with **longer duration of ventilation and higher mortality**
- Part of this association may be mediated by **inadequate management**
...ICU ventilators

Medtronic
PB

Avea

Hamilton

Engström

Draeger

Maquet
Getinge

Air Liquide
Good Synchrony: Paw follows Pes
What dose of ventilation?

Dysfunction

Respiratory Distress

Patient-Ventilator Asynchrony

Normal WOB

Patient-Ventilator Asynchrony

VILI
VALI
VIDD

Dose of Ventilatory Support
Patient-Ventilator dyssynchrony

• Many **different types** of dyssynchrony
• Detected from waveforms, alarms, agitation or often **undetected**
• Step 1: **understand** the type of dyssynchrony and its mechanism
 – How is the **patient** (agitation, sleepiness, work of breathing)? Respiratory Drive (**P0.1** [1-3.5 cmH2O])
 – How much **ventilation** / needs?
 – How much **sedation** / needs?
Patient-Ventilator dyssynchrony

- Step 1: understand the type of dyssynchrony and its mechanism
- Step 2: adjusting *ventilator* settings
- Step 3: need to *increase* respiratory drive? (reducing ventilation and/or sedation)
- Step 4: need to *decrease* respiratory drive? (increasing ventilation and/or sedation)
Recorded waveforms 2014-10-01 15:48:36

PSV

30 cmH₂O

80 l/min

-80 -700 ml

5 μV

15 cmH₂O

80 l/min

-80 -700 ml

5 μV

15 cmH₂O
Assistance in excess

- Auto-triggering
- Apneas
- Ineffective Efforts or Missed Cycles
When to suspect auto-triggering?

during controlled ventilation:
- RR > adjusted RR
- Respiratory alkalosis

during assisted ventilation:
- Sudden increase or persistently high respiratory rate
- Absence of an airway pressure drop at beginning of the cycle
- PSV: short cycle with a flow signal distortion
- ACV: abrupt airway pressure increase
Assistance in excess

• *Auto-triggering*

• Apneas

• Ineffective Efforts or Missed Cycles
Pressure support ventilation
Pressure support ventilation
Assist-Control

Pressure Support

Arousal

C4-A1
O3-A2
ROC
LOC
Chin
Leg
Vt
RC
AB
SpO2
EKG

1 min

Parthasarathy, AJRCCM 2002;166:1423
Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation

Airway Pressure (cmH$_2$O)

Baseline PS-ZEEP
Baseline PS-PEEP
Optimal PS
Optimal Ti

Intensive Care Med 2008
Asynchrony Index (%)

Baseline PS-PEEP

Optimal PS

Thille et al., Intensive Care Med 2008
Dyssynchrony related to excessive assistance

- Patient sleepy
- Low respiratory drive
- → Decrease ventilation
- → Decrease sedation
Insufficient Assistance

- Air hunger or flow starvation
- Double triggering, breath stacking and short cycles
Ventilation assistée-contrôlée
Ventilation assistée-contrôlée
Ventilation assistée-contrôlée
Peak Flow and Work of Breathing

Under Assistance

Airway Pressure (cmH$_2$O)

Flow (L/min)

Beginning of patient's effort

End of patient's effort

Double Triggering

Continuation of patient’s effort
Under Assistance

- **Airway Pressure (cmH₂O)**
 - **Flow (L/min)**
 - **Esophageal Pressure (cmH₂O)**

Double Triggering

- **Beginning of patient’s effort**
- **End of patient’s effort**
- **Continuation of patient’s effort**
Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome
A Randomized Clinical Trial

Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators
Volume Assist-Control

Passive

Active

Pressure Assist-Control

Passive

Active

Akoumianaki E et al AJRCCM 2014
Dyssynchrony related to insufficient assistance

- Patient working hard
- High respiratory drive
- → Increase sedation
Excessive Sedation?

- Respiratory Entrainement or Reverse Triggering
Accidental observation...
Clinical consequences: VT increase
Clinical consequences: double cycle
Reverse triggering dyssynchrony 24 hours after initiation of mechanical ventilation
Ricard Mellado Artigas, L. Felipe Damiani, Thomas Piraino, ...Laurent Brochard
In revision

40% (1 µV) or 26% (3 µV) patients have > 10% RT
ACV

Flow (L/s)

Airway Pressure (cmH₂O)

Double triggering

8 s

Time (s)
Dyssynchrony related to reverse triggering

• Patient sedated
• respiratory drive?
 → Decrease sedation?
 → Increase ventilation?
Reverse Triggering

May 15, 2019 | 3

Reverse triggering is a type of dyssynchrony that occurs when a patient effort occurs after (is triggered by) the initiation of a ventilator (non-patient triggered) breath. Usually, it is a phenomenon occurring over many consecutive breaths and also referred to as 'entrainment'. Diagnosis The visual detecting of reverse triggering is slightly different between modes of...

Read More

Name this Asynchrony 4

May 7, 2019 | 5

About the CoEMV

The Toronto Centre of Excellence in Mechanical Ventilation (CoEMV) at St. Michael's Hospital leads in personalized and evidence-based mechanical ventilation through collaborative practice, education, research, and innovation.

Subscribe via Email

Enter your email address to subscribe to the CoEMV blog and receive notifications of new posts by email.

Follow on Social Media

Share

CoEMV.ca
P0.1 < 1 cmH2O

P0.1 > 3.5 to 4.0 cmH2O

Telias I et al AJRCCM 2020 In press