BASICS OF VENTILATION:
SPONTANEOUS BREATHING

Niall D. Ferguson, MD, FRCPC, MSc
Head of Critical Care Medicine
University Health Network & Mount Sinai Hospital
Professor, Departments of Medicine & Physiology,
Institute of Health Policy, Management and Evaluation
Interdepartmental Division of Critical Care Medicine
University of Toronto
Disclosures

• Consultant for Xenios
• Speaker fees from Getinge
Outline

Scope of the problem
Pros & Cons of Spontaneous Breathing
Types of Asynchrony
Methods to Reduce Asynchrony
Summary
Evolution of Mortality Over Time in Patients Receiving Mechanical Ventilation

A Esteban, F Frutos Vivar, A Muriel, ND Ferguson, et al.

Am J Respir Crit Care Med 2013
Ventilator modes have 3 key elements

PS - Pressure Support Ventilation

Trigger: Patient

Limit: Pressure

Cycle: Flow (% Peak Insp V)
Outline

Scope of the problem
Pros & Cons of Spontaneous Breathing
Types of Asynchrony
Methods to Reduce Asynchrony
Summary
FIFTY YEARS OF RESEARCH IN ARDS
Spontaneous Breathing during Mechanical Ventilation
Risks, Mechanisms, and Management

Takeshi Yoshida¹,²,³,⁴, Yuji Fujino⁴, Marcelo B. P. Amato⁵, and Brian P. Kavanagh¹,²,³
MECHANICAL VENTILATION TO MINIMIZE PROGRESSION OF LUNG INJURY IN ACUTE RESPIRATORY FAILURE

Laurent Brochard¹,², Arthur Slutsky¹,², Antonio Pesenti³,⁴

Initial Lung Injury → Capillary Leak → Lung Edema

P-SILI
↓ PaO₂
↑ Vt, Pendelluft
Increased Pes swings

Impaired Gas Exchange Mechanics

Increased Respiratory Drive
Acute respiratory failure following pharmacologically induce hyperventilation: an experimental animal study

RR 25 then 70/min
V_T 7 then 9-15ml/kg

Table 1. Gross pathologic findings

<table>
<thead>
<tr>
<th>Group</th>
<th>Normal lungs</th>
<th>Mild lesions</th>
<th>Severe lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>5*a</td>
<td>9*</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Spontaneous Effort Causes Occult Pendelluft during Mechanical Ventilation

Takeshi Yoshida\(^1\), Vinicius Torsani\(^1\), Susimeire Gomes\(^1\), Roberta R. De Santis\(^1\), Marcelo A. Beraldo\(^1\), Eduardo L. V. Costa\(^1\), Mauro R. Tucci\(^1\), Walter A. Zin\(^3\), Brian P. Kavanagh\(^4,5\), and Marcelo B. P. Amato\(^1\)
The Comparison of Spontaneous Breathing and Muscle Paralysis in Two Different Severities of Experimental Lung Injury*

Takeshi Yoshida, MD; Akinori Uchiyama, MD, PhD; Nariaki Matsuura, MD, PhD; Takashi Mashimo, MD, PhD; Yuji Fujino, MD, PhD

Rabbits with mild (saline lavage) or severe (saline lavage + VILI) lung injury
Spontaneous Effort During Mechanical Ventilation: Maximal Injury With Less Positive End-Expiratory Pressure*

Takeshi Yoshida, MD, PhD1,2; Rollin Roldan, MD1,3; Marcelo A. Beraldo, PhD1,4; Vinicius Torsani, PhD1; Susimeire Gomes, PhD1; Roberta R. De Santis, MD1; Eduardo L. V. Costa, MD1,5; Mauro R. Tucci, MD1; Raul G. Lima, PhD6; Brian P. Kavanagh, MD7; Marcelo B. P. Amato, MD, PhD1

Crit Care Med 2016; 44:e678–e688
For tidal volume, data exclude patients weaning in pressure support mode, with FiO$_2 \leq 0.4$ and PEEP ≤ 10.

For tidal volume, data exclude patients weaning in pressure support mode, with FiO$_2 \leq 0.4$ and PEEP ≤ 10.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Lung Open Ventilation</th>
<th>Control</th>
<th>P Value</th>
<th>Lung Open Ventilation</th>
<th>Control</th>
<th>P Value</th>
<th>Lung Open Ventilation</th>
<th>Control</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidal volume, mean (SD), mL/kg predicted body weight</td>
<td>6.8 (1.4)</td>
<td>6.8 (1.3)</td>
<td>.76</td>
<td>6.9 (1.5)</td>
<td>6.7 (1.5)</td>
<td>.02</td>
<td>6.9 (1.3)</td>
<td>7.0 (1.6)</td>
<td>.53</td>
</tr>
<tr>
<td>No. of patients</td>
<td>436</td>
<td>469</td>
<td>.337</td>
<td>397</td>
<td>305</td>
<td>.001</td>
<td>255</td>
<td>281</td>
<td>.76</td>
</tr>
<tr>
<td>Total respiratory rate, mean (SD), /min</td>
<td>25.2 (6.6)</td>
<td>26.0 (6.5)</td>
<td>.08</td>
<td>25.1 (6.6)</td>
<td>27.1 (8.0)</td>
<td><.001</td>
<td>25.5 (8.0)</td>
<td>26.1 (7.6)</td>
<td>.26</td>
</tr>
<tr>
<td>No. of patients</td>
<td>471</td>
<td>507</td>
<td>.347</td>
<td>447</td>
<td>479</td>
<td>.001</td>
<td>316</td>
<td>351</td>
<td>.001</td>
</tr>
<tr>
<td>Plateau pressure, mean (SD), cm H$_2$O</td>
<td>30.2 (6.3)</td>
<td>24.9 (5.1)</td>
<td><.001</td>
<td>28.6 (6.0)</td>
<td>24.7 (5.7)</td>
<td><.001</td>
<td>28.8 (6.3)</td>
<td>25.1 (6.8)</td>
<td><.001</td>
</tr>
<tr>
<td>No. of patients</td>
<td>435</td>
<td>424</td>
<td>.174</td>
<td>334</td>
<td>380</td>
<td>.001</td>
<td>174</td>
<td>232</td>
<td>.001</td>
</tr>
<tr>
<td>30.1-35.0</td>
<td>113</td>
<td>33</td>
<td>.037</td>
<td>76</td>
<td>38</td>
<td>.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.1-40.0</td>
<td>86</td>
<td>4</td>
<td>22</td>
<td>17</td>
<td>.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>40.0</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td><.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pco$_2$, mean (SD)</td>
<td>0.59 (0.16)</td>
<td>0.59 (0.17)</td>
<td><.001</td>
<td>0.41 (0.12)</td>
<td>0.52 (0.16)</td>
<td><.001</td>
<td>0.39 (0.12)</td>
<td>0.48 (0.17)</td>
<td><.001</td>
</tr>
<tr>
<td>No. of patients</td>
<td>471</td>
<td>507</td>
<td>.319</td>
<td>447</td>
<td>482</td>
<td>.356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set PEEP, mean (SD), cm H$_2$O</td>
<td>15.6 (3.9)</td>
<td>10.1 (3.0)</td>
<td><.001</td>
<td>11.8 (4.1)</td>
<td>8.8 (3.0)</td>
<td><.001</td>
<td>10.3 (4.3)</td>
<td>8.0 (3.1)</td>
<td><.001</td>
</tr>
<tr>
<td>All patients</td>
<td>471</td>
<td>507</td>
<td>.316</td>
<td>447</td>
<td>479</td>
<td>.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First 151 patients</td>
<td>15.3 (3.8)</td>
<td>10.6 (2.9)</td>
<td><.001</td>
<td>12.1 (4.1)</td>
<td>9.3 (3.0)</td>
<td><.001</td>
<td>10.4 (4.3)</td>
<td>8.2 (3.1)</td>
<td><.001</td>
</tr>
<tr>
<td>No. of patients</td>
<td>77</td>
<td>82</td>
<td>.47</td>
<td>72</td>
<td>79</td>
<td>.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsequent 922 patients</td>
<td>15.7 (4.0)</td>
<td>10.0 (3.0)</td>
<td><.001</td>
<td>11.8 (4.1)</td>
<td>8.7 (3.0)</td>
<td><.001</td>
<td>10.3 (4.3)</td>
<td>8.0 (3.1)</td>
<td><.001</td>
</tr>
<tr>
<td>No. of patients</td>
<td>269</td>
<td>425</td>
<td>.269</td>
<td>278</td>
<td>385</td>
<td>.269</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I:E ratio, mean (SD)</td>
<td>0.62 (0.19)</td>
<td>0.56 (0.19)</td>
<td><.001</td>
<td>0.64 (0.21)</td>
<td>0.56 (0.21)</td>
<td><.001</td>
<td>0.64 (0.19)</td>
<td>0.59 (0.23)</td>
<td><.001</td>
</tr>
<tr>
<td>No. of patients</td>
<td>410</td>
<td>420</td>
<td>.170</td>
<td>397</td>
<td>373</td>
<td>.312</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paco$_2$/Pco$_2$, mean (SD)</td>
<td>187.4 (68.6)</td>
<td>140.1 (60.6)</td>
<td><.001</td>
<td>196.8 (60.6)</td>
<td>164.1 (63.5)</td>
<td><.001</td>
<td>212.7 (70.5)</td>
<td>180.8 (73.9)</td>
<td><.001</td>
</tr>
</tbody>
</table>

Abbreviations: Pco$_2$, fraction of inspired oxygen; I:E, inspiration/expiration; PEEP, positive end-expiratory pressure; Pa$_{aO2}$, partial pressure of arterial oxygen; Pa$_{aCO2}$, partial pressure of arterial carbon dioxide.

*Data shown were derived from the average value obtained for each patient over 3 measurements each day. Values were recorded on days 1, 3, and 7 after enrollment. For tidal volume and plateau airway pressure measurements, data exclude patients weaning in pressure support mode, with FiO$_2$ less than or equal to 0.4 and PEEP less than or equal to 10 cm H$_2$O.
Evolution of Diaphragm Thickness during Mechanical Ventilation

Impact of Inspiratory Effort

Ewan C. Goligher1,2,3,4, Eddy Fan1,2,4,5, Margaret S. Herridge1,2,4,6, Alistair Murray1,4, Stefannie Vorona1,4, Debbie Brace1,4, Nuttapol Rittayamai1,7, Ashley Lanys1,4,7, George Tomlinson2, Jeffrey M. Singh1,2,4, Steffen-Sebastian Bolz3, Gordon D. Rubenfeld1,2,5,8, Brian P. Kavanagh1,3,9,10, Laurent J. Brochard1,2,7, and Niall D. Ferguson1,2,3,4,5,6

Am J Respir Crit Care Med Vol 192, Iss 9, pp 1080–1088, Nov 1, 2015

510 repeated measurements in 107 subjects

Adjusted for:
- Age
- Sex
- SAPS II
- Sepsis
- SOFA

Thickening fraction modifies the rate of change in thickness (interaction p=0.04)
Spontaneous Breathing in ARDS

When to allow any?

How much to allow?

Consider maintaining normal effort levels – implies measuring effort
Spontaneous Breathing in ARDS

PRO
- Prevent diaphragm atrophy (overassist myotrauma)
- Improved hemodynamics
- Less sedation and associated adverse effects
- Progress patients towards liberation

CONs
- Direct overdistention injury
- Pendelluft injury
- Increased lung perfusion
- Dyssynchrony – double-trigger
- Expiratory muscle activation leading to decreased EELV

Effect Modifiers:
ARDS Severity; Smaller Baby Lung; High Drive; Injurious Setting
Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives
Airway Occlusion Pressure as an Estimate of Respiratory Drive and Inspiratory Effort During Assisted Ventilation
Telias I, et al. AJRCCM 2020 In Press
End-Expiratory Exclusion Manoeuvre

Perform 3 single breath end-expiratory airway occlusions to measure ΔP_{occ} every 4-8 hours

Estimate P_{mus}
If $\Delta P_{occ} < 0 \text{ cm H}_2\text{O}$, estimate ΔP_L

Predicted $P_{mus} > 13-15 \text{ cm H}_2\text{O}$
OR
Predicted $\Delta P_L \geq 16-17 \text{ cm H}_2\text{O}$

Yes
Consider P_{es} monitoring to guide clinical management
or
consider modifying sedation and ventilation to achieve predicted P_{mus} and ΔP_L
within acceptable limits

No

Target achieved

Predicted $P_{mus} = -0.7 \times \Delta P_{occ}$
Predicted $\Delta P_L = (\text{Peak Paw} - \text{PEEP}) - 0.6 \times \Delta P_{occ}$
Bedside Adjustment of Proportional Assist Ventilation to Target a Predefined Range of Respiratory Effort

Guillaume Carteaux, MD; Jordi Mancebo, MD, PhD; Alain Mercat, MD, PhD; Jean Dellamonica, MD, PhD; Jean-Christophe M. Richard, MD, PhD; Hernan Aguirre-Bermeo, MD; Achille Kouatchet, MD; Gaetan Beduneau, MD; Arnaud W. Thille, MD, PhD; Laurent Brochard, MD

INITIATION OF PAV+

VENTILATORY PARAMETERS SETTINGS
- Gain: 50%
- Inspiratory trigger: 11/min

ALARMS SETTINGS
- P_{peak} max: 40 cmH$_2$O
- RR max: 40 cycles/min
- V_{te} max: 10 ml/kg of TBW
- V_{te} min: 0 ml
- V_{e} max: 20 l/min
- V_{e} min: 7 l/min

ALGORITHM TO ADJUST THE GAIN

1. **CALCULATE $P_{mus,Peak}$**
2. **DECREASE THE GAIN IN STEPS OF 10% until P_{peak} reaches the target range**
3. **TARGET RANGE ACHIEVED: NO ACTION, unless one of the followings occurs**
4. **INCREASE THE GAIN IN STEPS OF 10% until P_{peak} reaches the target range**
Pressure Support Ventilation

Ventilator’s mission is to regulate pressure
• Set PS level; C_{RS}; AND Patient Effort determine V_T

PS 8; PEEP 5
$V_T = 750 \text{ mL}$
How do control V_T in this patient???
Decreasing spontaneous effort levels

Increase inspiratory assist – but be careful with V_T
Increase PEEP
Consider NMB – but trade Under for Over-assist
Consider partial NMB
Consider ECLS
Outline

Scope of the problem
Pros & Cons of Spontaneous Breathing
Types of Asynchrony
Methods to Reduce Asynchrony
Summary
Patient-ventilator asynchrony during assisted mechanical ventilation

<table>
<thead>
<tr>
<th></th>
<th>Asynchrony index < 10% (n = 47)</th>
<th>Asynchrony index ≥ 10% (n = 15)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of mechanical ventilation (days; IQR)</td>
<td>7 (3–20)</td>
<td>25 (9–42)</td>
<td>0.005</td>
</tr>
<tr>
<td>Duration of mechanical ventilation ≥ 7 days</td>
<td>23 (49%)</td>
<td>13 (87%)</td>
<td>0.01</td>
</tr>
<tr>
<td>Tracheostomy</td>
<td>2 (4%)</td>
<td>5 (33%)</td>
<td>0.007</td>
</tr>
<tr>
<td>Mortality</td>
<td>15 (32%)</td>
<td>7 (47%)</td>
<td>0.36</td>
</tr>
</tbody>
</table>

25% of patients showed significant asynchrony
Asynchronies during mechanical ventilation are associated with mortality

<table>
<thead>
<tr>
<th></th>
<th>Al ≤ 10 % (n = 44)</th>
<th>Al > 10 % (n = 6)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of MV (days)</td>
<td>6 [5.0; 15.0]</td>
<td>16 [9.7; 20.0]</td>
<td>0.061</td>
</tr>
<tr>
<td>Reintubation</td>
<td>9 (20 %)</td>
<td>0 (0 %)</td>
<td>0.57</td>
</tr>
<tr>
<td>Tracheostomy</td>
<td>14 (32 %)</td>
<td>2 (33 %)</td>
<td>0.999</td>
</tr>
<tr>
<td>ICU mortality</td>
<td>6 (14 %)</td>
<td>4 (67 %)</td>
<td>0.011*</td>
</tr>
<tr>
<td>Hospital mortality</td>
<td>10 (23 %)</td>
<td>4 (67 %)</td>
<td>0.044*</td>
</tr>
</tbody>
</table>
Types of Asynchrony

Ineffective Efforts / Delayed Triggering
• Trigger too insensitive / weak efforts
• Auto PEEP
• Cycle-off Asynchrony (prolonged inspiration)

Double Triggering
• High respiratory drive / Short set inspiratory time

Cycle-off Asynchrony
• Prolonged inspiration
• Premature termination

Reverse Triggering

Auto Triggering
• Cardiac oscillations / Trigger too sensitive
Ineffective Efforts

![Graphs showing ineffecive efforts](image)
Delayed Triggering
Cycle-off Asynchrony (and others)
Cycle-off Asynchrony – Premature Termination
Spontaneous Breathing during Mechanical Ventilation
Risks, Mechanisms, and Management

Takeshi Yoshida1,2,3,4, Yuji Fujino4, Marcelo B. P. Amato5, and Brian P. Kavanagh1,2,3
Outline

Scope of the problem
Pros & Cons of Spontaneous Breathing
Types of Asynchrony
Methods to Reduce Asynchrony
Summary
28-day Mortality:
24% - Nimbex
33% - Placebo
p=0.05
Avoiding Asynchrony

Monitor and treat / match AutoPEEP
Avoid Volume A/C
Using Pressure Support
 • Decrease PS level
 • Increase cycle-off trigger
Advanced modes
Partial Neuromuscular Blockade during Partial Ventilatory Support in Sedated Patients with High Tidal Volumes

Jonne Doorduin¹, Joike L. Nollet¹, Lisanne H. Roesthuis¹, Hieronymus W. H. van Hees², Laurent J. Brochard³,⁴, Christer A. Sinderby³,⁴, Johannes G. van der Hoeven¹, and Leo M. A. Heunks¹

1. Baseline
 VCV (10 min): $V_T = 6$ ml/kg

2. Titration
 Bolus rocuronium 2–5 mg
 if $V_T >$

Am J Respir Crit Care Med Vol 195, Iss 8, pp 1033–1042, Apr 15, 2017

start phase 2: rocuronium titration
Extracorporeal life support for adults with severe acute respiratory failure

Lorenzo Del Sorbo, Marcelo Cypel, Eddy Fan

ECCO₂R

- Circuit/hypoxia: Venous bypass or arteriovenous bypass
- Blood drainage: From central vein (IJV, FV, SV) or femoral artery in arteriovenous configuration
- Blood return: Into central vein (IJV, FV, SV)
- Cannula dimension: 8-29 Fr
- Intravenous access: Single or double
- Cannula type: Two single cannulas or dual-lumen cannula
- Pump: Centrifugal or peristaltic (absent in arteriovenous configuration)
- Extracorporeal blood flow: 0.2-2.0 L/min
- CO₂ clearance: 30-100% VO₂, dependent mainly on sweep-gas flow
- Oxygen delivery capacity: Not significant
- Anticoagulation target: ACT 1.5 times normal, aPTT 1.5 times normal
Laboratory Report

Control of Breathing Using an Extracorporeal Membrane Lung

Theodor Kolobow, M.D.,* Luciano Gattinoni, M.D.,* Timothy A. Tomlinson, B.S.,* Joseph E. Pierce, D.V.M.†

7 lambs
No anaesthesia or sedation
ECCO₂R

CO₂ Removal Increases with Blood Flow 200-1000 mL
Low-Frequency Positive-Pressure Ventilation With Extracorporeal CO₂ Removal in Severe Acute Respiratory Failure (JAMA 1986;256:881-886)

Luciano Gattinoni, MD; Antonio Pesenti, MD; Daniele Mascheroni, MD; Roberto Marcolin, MD; Roberto Fumagalli, MD; Francesca Rossi, MD; Gaetano Iapichino, MD; Giuliano Romagnoli, MD; Liji Uziel, MD; Angelo Agostoni, MD; Theodor Kolobow, MD; Giorgio Damia, MD
Opinion Based Medicine…

Set $V_T = 6$ ml/kg (or lower)
Control breath size if mod-severe ARDS

Set $V_T = 6-8$ ml/kg
Tolerate larger spontaneous breaths
Consider check for pendeluft
Take Home Points

- Impact of spontaneous breathing during ARDS depends on timing and severity
- Measuring patient effort is important
- Asynchrony is common and MAY impact outcomes
- When allowing spontaneous breathing – consider normalizing efforts to protect both lung and diaphragm
- Pay attention to flow and pressure–time waveforms!
ECMO for ARDS: from salvage to standard of care?

Darryl Abrams, Niall D Ferguson, Laurent Brochard, Eddy Fan, Alain Mercat, Alain Combes, Vin Pellegrino, Matthieu Schmidt, Arthur S Slutsky, *Daniel Brodie

Treat underlying cause of ARDS
Standard lung-protective ventilation strategy
Diuresis or resuscitation as appropriate

\[\text{PaO}_2: \text{FiO}_2 < 150 \text{ mmHg} \]

Strongly recommend:
- Prone positioning (unless contraindicated)
Recommend:
- NMBA
- High PEEP strategy
May also consider:
- Inhaled pulmonary vasodilators
- Recruitment maneuvers

\[\text{PaO}_2: \text{FiO}_2 \geq 150 \text{ mmHg} \]

Is the pH < 7.25 with PaCO\(_2\) ≥ 60 mmHg > 6hrs\(^a\)?

Yes\(^b\)
- Contraindication to ECMO?\(^d\)

Yes
- Consider adjunctive therapies,\(^d\) as appropriate

No
- Recommend ECMO?\(^e\)

Are any of the following criteria met?
- PaO\(_2\):FiO\(_2\) < 80 mmHg for > 6hrs
- PaO\(_2\):FiO\(_2\) < 50 mmHg for > 3hrs
- pH < 7.25 with PaCO\(_2\) ≥ 60 mmHg > 6hrs\(^a\)

No
- Continue current management